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Abstract. The spontaneous generation of magnetic and chromomagnetic fields at high temperature is
investigated in the standard model. The consistent effective potential including the one-loop and the daisy
diagrams of all boson and fermion fields is calculated. The mixing of the generated fields due to the
quark loop diagram is studied in detail. It is found that the quark contribution increases the magnetic and
chromomagnetic field strengths as compared with the separate generation of fields. The magnetized vacuum
state is stable due to the magnetic gauge field masses included in the daisy diagrams. Some applications
of the results obtained are discussed.

1 Introduction

One of the interesting problems of present high energy
physics is the generation of strong magnetic fields in the
early universe. Different mechanisms of producing the
fields at different stages of the universe evolution have
been proposed (see, for instance, the surveys in [1–3]) and
the influence of fields on various processes was discussed.
In particular, the primordial magnetic fields, being imple-
mented in the cosmic plasma, may serve as the seed source
of the present extra-galaxy fields.

One of the mechanisms is a spontaneous vacuum mag-
netization at high temperature. This was investigated al-
ready for the case of pure SU(2) gluodynamics in [4–6],
where the possibility of this phenomenon has been shown.
The stability of the magnetized vacuum was also stud-
ied [6]. As is well known, the magnetization takes place
for the non-abelian gauge fields due to vacuum dynam-
ics [7]. In fact, this is one of the distinguishable features
of asymptotically free theories. In the papers mentioned
the fermions were not taken into consideration. However,
these may affect the vacuum state due to loop corrections
in strong magnetic fields at high temperature.

In the present paper the spontaneous vacuum magne-
tization is investigated in the standard model (SM) of el-
ementary particles. All boson and fermion fields are taken
into consideration. In the SM there are two kind of non-
abelian gauge fields – the SU(2) weak isospin gauge fields
responsible for weak interactions and the SU(3) gluons
mediating the strong interactions. The quarks possess
both the electric and color charges, so they have to mix the
chromomagnetic and the ordinary magnetic fields due to
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vacuum loops. Because of this mixing some specific config-
urations of the fields must be produced at high tempera-
ture. To elaborate this picture quantitatively, we calculate
the effective potential (EP) including the one-loop and
the daisy diagram contributions in the constant abelian
chromomagnetic and magnetic fields, Hc = const and
H = const, at high temperatures.

Let us note the advantages of this approximation. The
EP of the background abelian magnetic fields is the gauge
fixing independent one. The daisy diagrams account for
the most essential long-range correlation corrections at
high temperature. Therefore, such a type of EP includes
the leading and the next-to-leading terms in the coupling
constants. Moreover, as was demonstrated in [6,8], the
daisy diagrams of the charged gluons and the W -bosons
make the spectra of these fields stable at high tempera-
tures. This guarantees vacuum stability and the consis-
tency of the approximation. The EP of this type has been
used recently to investigate the electroweak phase tran-
sition in an external hypercharge magnetic field in the
SM [9]. The obtained results are in good agreement with
the nonperturbative calculations carried out in [10,11].
Therefore, it is reasonable to make use of the same ap-
proximation to investigate similar calculation procedure
problems. A more detailed comparison of the results on
the electroweak phase transition is given in [9]. A number
of differences between the method in [10] and the present
one having relevance to the problem under consideration
will be discussed in the last section.

So we will use this approximation in what follows.
Since an abelian magnetic hypercharge field is not gener-
ated spontaneously, in what follows we shall consider the
non-abelian component of the magnetic field. The mech-
anisms of hypermagnetic field generation has been dis-
cussed in [8,12]. It will be shown that at high tempera-
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tures either the strong magnetic or the chromomagnetic
fields are generated. They are stable in the approxima-
tion adopted due to the magnetic masses of m2

transversal ∼
(gH)1/2T of the gauge field transversal modes [13]. In this
way the consistent picture of the magnetized vacuum state
in the SM at high temperature can be derived.

The contents of this paper are as follows. In Sect. 2 the
contributions of bosons and fermions to the EP v′(H,T )
of external magnetic and chromomagnetic fields are calcu-
lated in a form convenient for numeric investigations. In
Sect. 3 the field strengths are calculated. A discussion and
concluding remarks are given in Sect. 4.

2 Basic formulae

The SM Lagrangian of the gauge boson sector is (see, for
example, [14])

L = −1
4
Fα

µνF
µν
α − 1

4
GµνG

µν − 1
4
F α

µνF µν
α , (1)

where the standard notation is introduced:

Fα
µν = ∂µA

α
ν − ∂νA

α
µ + gεabcAb

µA
c
ν , (2)

Gµν = ∂µBν − ∂νBµ,

F α
µν = ∂µAα

ν − ∂νAα
µ + gsf

abcAb
µAc

ν .

The fields corresponding to the W -, Z-bosons and pho-
tons, respectively, are

W±
µ =

1√
2
(A1

µ ± iA2
µ), (3)

Zµ =
1√

g2 + g′2 (gA
3
µ − g′Bµ),

Aµ =
1√

g2 + g′2 (g
′A3

µ + gBµ),

and Aα
µ is the gluon field.

To introduce an interaction with the magnetic and
chromomagnetic fields we replace all derivatives in the La-
grangian by the covariant ones,

∂µ → Dµ = ∂µ + ig
τα

2
Aα

µ + igs
λα

2
Aα

µ. (4)

Here τα and λα stand for the Pauli and the Gell-Mann
matrices, respectively.

In the SU(2) sector of the SM there is only one mag-
netic field, the third projection of the gauge field. In the
SU(3)c sector there are two possible chromomagnetic
fields connected with the third and eighth generators of
the SU(3).

For simplicity, in what follows we shall consider the
field associated with the third generator of the SU(3)c.

The introduction of an interaction with classical mag-
netic and chromomagnetic fields, as usual, is done by split-
ting the potentials in two parts:

Aµ = Āµ + AR
µ , (5)

Aµ = Āµ + AR
µ ,

where AR and AR describe the radiation fields and Ā =
(0, 0, Hx1, 0) and Ā = (0, 0,H3x

1, 0) correspond to the
constant magnetic and chromomagnetic fields directed
along the third axes in the space and in the internal color
and isospin spaces.

We used the general relativistic renormalizable gauge
which is set by the following gauge fixing conditions [15]:

∂µW
±µ ± ieĀµW

±µ ∓ i
gφc
2ξ

φ± = C±(x), (6)

∂µZ
µ − i

ξ′ (g
2 + g′2)1/2φcφZ = CZ(x),

∂µAµ + igsĀ = C(x),

where e = g sin θW, tan θW = g′/g, φ± and φZ are the
Goldstone fields, ξ and ξ′ are the gauge fixing parameters,
C± and CZ are arbitrary functions and φc is the value
of the scalar field condensate. Setting ξ, ξ′ = 0 we choose
the unitary gauge. In the restored phase the scalar field
condensate φc = 0 and (6) are simplified.

The values of the macroscopic magnetic and chromo-
magnetic fields generated at high temperature will be cal-
culated by minimization of the thermodynamic potential.

The thermodynamic potential Ω of the model is

Ω = − 1
β

logZ, (7)

Z = Tr exp(−βH), (8)

where Z is the partition function, and H is the Hamilto-
nian of the system. The trace is calculated over all physical
states.

To obtain the EP one has to rewrite (7) as a sum over
quantum states calculated near the nontrivial classical so-
lutions Aext and Aext. This procedure is well-described in
the literature (see, for instance, [6,16,17]) and the result
can be written in the form

V = V (1)(H,H3, T ) + V (2)(H,H3, T ) + ... (9)
+ Vdaisy(H,H3, T ) + ...,

where V (1) is the one-loop EP; the other terms present
the contributions of two-, three-, etc. loop corrections.

Among these terms there are ones responsible for dom-
inant contributions of long distances at high temperature
– the so-called daisy or ring diagrams (see, for example,
[16]). This part of the EP, Vdaisy(H,H3, T ), is nonzero in
the case when massless states appear in a system. The ring
diagrams have to be calculated when the vacuum mag-
netization at finite temperature is investigated. In fact,
one first must assume that the fields are nonzero, calcu-
late the EP V (H,H3, T ) and after that check whether its
minimum is located at nonzero H and H3. On the other
hand, if one investigates problems in the applied external
fields, the charged fields become massive with the masses
depending on ∼ (gH)1/2, ∼ (gsH3)1/2 and have to be
omitted.

The one-loop contribution to EP is given by the ex-
pression

V (1) = −1
2
Tr logGab, (10)
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where Gab stands for the propagators of all quantum fields
W±, A, . . . in the background fields H and H3. In the
proper time formalism, the s-representation, the calcula-
tion of the trace can be carried out in accordance with the
formula [18]

Tr logGab = −
∫ ∞

0

ds
s

tr exp(−isG−1
ab ). (11)

Details of the calculations based on the s-representation
and formula (12) can be found in [19–21].

We make use of the method of [19] allowing one in a
natural way to incorporate the temperature into this for-
malism. A basic formula of [19] connecting the Matsubara
Green functions with the Green functions at zero temper-
ature is needed,

Gab
k (x, x′;T )=

+∞∑
−∞

(−1)(n+[x])σkGab
k (x − [x]βu, x′ − nβu),

(12)
where Gab

k is the corresponding function at T = 0, β =
1/T , u = (0, 0, 0, 1), [x] denotes the integer part of x4/β,
σk = 1 in the case of physical fermions and σk = 0 for
boson and ghost fields. The Green functions in the right-
hand side of (12) are the matrix elements of the operators
Gk computed in the states |x′, a〉 at T = 0, and in the
left-hand side the operators are averaged over the states
with T �= 0. The corresponding functional spaces U0 and
UT are different but in the limit of T → 0 UT transforms
into U0.

The terms with n = 0 in (12) and (10) give the zero
temperature expressions for the Green functions and the
effective potential V ′, respectively. So we can split it into
two parts:

V ′(H,H3, T ) = V ′(H,H3) + V ′
τ (H,H3, T ). (13)

The standard procedure to account for the daisy diagrams
is to substitute the tree level Matsubara Green functions
in (10), [G(0)

i ]−1, by the full propagator G−1
i = [G(0)

i ]−1 +
Π(H,T ) (see for details [6,16,17]), where the last term is
the polarization operator at finite temperature in the field
taken at zero longitudinal momentum kl = 0.

Passing the detailed calculations we can notice that
the exact one-loop EP will be transformed into EP, which
contains the daisy diagrams as well as one-loop diagrams,
by adding a term containing the temperature dependent
mass of the particle to the exponent.

It is convenient for what follows to introduce the di-
mensionless quantities: x = H/H0 (H0 = M2

W /e), y =
H3/H

0
3 (H0

3 = M2
W /gs), B = βMW , τ = 1/B = T/MW ,

v = V/H2
0 .

The total EP in our consideration consists of several
terms:

v′ =
x2

2
+

y2

2
+ v′

leptons + v′
quarks (14)

+ v′
W−bosons + v′

gluons.

These terms can be exactly written for the SM fields
(in dimensionless variables).

(1) leptons:

v′
leptons = − 1

4π2

∞∑
n=1

(−1)n

∫ ∞

0

ds
s3

(15)

· e−(m2
leptonss+(β2n2)/(4s))(xsCoth(xs) − 1);

(2) quarks:

v′
quarks = − 1

4π2

6∑
f=1

∞∑
n=1

(−1)n

∫ ∞

0

ds
s3

e−(m2
f s+(β2n2)/(4s))

· (qfxsCoth(qfxs) · ysCoth(ys) − 1); (16)

(3) W -bosons (see [22]):

v′
W = − x

8π2

∞∑
n=1

∫ ∞

0

ds
s2

e−(m2
W s+(β2n2)/(4s))

·
[

3
Sinh(xs)

+ 4Sinh(xs)
]
; (17)

(4) gluons (see [6]):

v′
gluons = − y

4π2

∞∑
n=1

∫ ∞

0

ds
s2

e−(m2
gluonss+(β2n2)/(4s))

·
[

1
Sinh(ys)

+ 2Sinh(ys)
]
. (18)

Here, mleptons, mf , mW and mgluons are the tempera-
ture masses of leptons, quarks, W -bosons and gluons, re-
spectively; qf = (2/3,−1/3,−1/3, 2/3,−1/3, 2/3) are the
charges of the quarks.

Since we investigate the dynamics of high-temperature
effects connected with the presence of external fields, we
used only the leading in temperature terms of the Debye
masses of the particles ([6,22]).

The temperature masses of leptons and quarks are

m2
leptons =

(
e

β

)2

, m2
f =

(
e

β

)2

. (19)

As is known [6], the transversal components of the
charged gluons and W -bosons have no temperature masses
of order ∼ gsH3 and ∼ gH. Only the longitudinal com-
ponents have Debye masses, but they are H- and H3-
independent; therefore, they can be omitted in our consid-
eration. Instead, the transversal component masses, which
depend on the Landau level number, must be used. So the
transversal temperature masses of W -bosons and charged
gluons,

m2
W = 15αe.w.

h1/2

β
, m2

gluons = 15αs
h1/2

β
, (20)

are to be substituted. Here, αe.w. and αs are the electro-
weak- and the strong-interaction couplings, respectively.

In the approximation adopted in the present investi-
gation we take as the masses the ground state energies of
the transversal modes [13].
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In the one-loop order the neutral gluon contribution is
a trivial H3-independent constant which can be omitted.
However, these fields are long-range states and they do
give a H3-dependent EP through the correlation correc-
tions depending on the temperature and field. We included
only the longitudinal neutral modes because their Debye
masses Π0(y, β) are nonzero. The corresponding EP is [6]

vring =
1

24β2Π
0(y, β) − 1

12πβ
(
Π0(y, β)

)3/2
(21)

+

(
Π0(y, β)

)2
32π2

[
log

(
4π

β(Π0(y, β))1/2

)
+

3
4

− γ

]
;

γ is Euler’s constant, Π0(y, β) = Π0
00(k = 0, y, β) is the

zero-zero component of the neutral gluon field polarization
operator calculated in the external field at finite temper-
ature and taken at zero momentum [6]

Π0(y, β) =
2g2

3β2 − y1/2

πβ
− y

4π2
. (22)

Equations (14)–(18) and (21) will be used in the numeric
calculations.

3 Generation of magnetic
and chromomagnetic fields

In order to find the strengths of the generated magnetic
and chromomagnetic fields we have to find the minima of
the EP in the presence of both of them. First of all we will
find the x and y strengths of the fields, when the quark
contribution is divided in two parts:

v′
quarks(x, β) = v′

quarks|y→0 (23)

= − 1
4π2

6∑
f=1

∞∑
n=1

(−1)n

∫ ∞

0

ds
s3

e−(m2
f s+(β2n2)/(4s))

·(qfxsCoth(qfxs) − 1)

and

v′
quarks(y, β) = v′

quarks|x→0 (24)

= − 1
4π2

6∑
f=1

∞∑
n=1

(−1)n

∫ ∞

0

ds
s3

e−(m2
f s+(β2n2)/(4s))

·(ysCoth(ys) − 1),

where v′
quarks(x, β) is in the magnetic field, and v′

quarks(y,
β) in the presence of the chromomagnetic field.

Let us rewrite the v′ in (14) as follows:

v′(x̄, ȳ) = v1(x̄) + v2(ȳ) + v3(x̄, ȳ), (25)

where x̄ = x + δx, ȳ = y + δy, and δx and δy are the
field corrections connected with the effect of the fields’
interfusion in the quark sector.

Since the mixing of fields due to a quark loop is weak
(this will be justified by numeric calculations) we can as-
sume that δx  1 and δy  1, and write

v1(x̄) = v1(x + δx) = v1(x) +
∂v1(x)
∂x

δx,

v2(ȳ) = v2(y + δy) = v2(y) +
∂v2(y)
∂y

δy,

v3(x̄, ȳ) = v3(x + δx, y + δy) = v3(x, y). (26)

After simple transformations we can find δx and δy:

δx =

∂v3(x, 0)
∂x

− ∂v3(x, y)
∂x

∂2v1(x)
∂x2

,

δy =

∂v3(0, y)
∂y

− ∂v3(x, y)
∂y

∂2v2(y)
∂y2

. (27)

Hence we may obtain x̄ = x + δx and ȳ = y + δy.
The results on the field strengths determined by nu-

meric investigation of the total EP are summarized in Ta-
bles 1 and 2.

In the first column of Tables 1 and 2 we show the in-
verse temperature. In the second one the strength of mag-
netic and chromomagnetic fields are adduced in the case
of the quark EP, which describes each field separately.
The next column gives the field corrections in the case
of total quark EP. The fourth column presents the rel-
ative value of the corrections. The last column gives the
resulting strength of magnetic and chromomagnetic fields,
respectively.

As is seen, the increase of the inverse temperature leads
to decreasing strengths of the generated fields. This depen-
dence is well in accordance with the picture of the universe
cooling.

From the above analysis it follows that at high tem-
peratures the value of the each type of magnetic field
is increased when the other one is taken into account.
With temperature decreasing this effect becomes less pro-
nounced and disappears at comparably low temperatures
β ∼ 1.

4 Discussion

Let us discuss the results obtained. As we elaborated in the
approximation to the EP including the one-loop and the
daisy diagrams, in the SM at high temperatures both the
magnetic and chromomagnetic fields have to be generated.
These states are stable, as follows from the absence of
imaginary terms in the EP minima.

If the quark loops are discarded, both of the fields can
be generated in the system separately. All these states are
stable, due to the magnetic mass ∼ g2(gH)1/2T of the
transversal gauge field modes. Here it worth to mention
that the one-loop transversal gauge field mass is of order



V.I. Demchik, V.V. Skalozub: The spontaneous generation of magnetic and chromomagnetic fields 295

Fig. 1. The dependence of the strengths of the generated mag-
netic field (H) on inverse temperature (b). The dashed line
is the theoretical position in the case of a single magnetic
field and the solid one is calculated in the presence of both
fields

Table 1. The strength of the generated magnetic field

β x δx δx/x,% x̄

0.1 0.7 0.0000165 0.002 0.7000165
0.2 0.2 0.000745 0.373 0.200745
0.3 0.07 −0.0000549 −0.079 0.0699451
0.4 0.04 −0.0000358 −0.090 0.0399642
0.5 0.03 −0.0000467 −0.156 0.0299533
0.6 0.02 −0.0000492 −0.246 0.0199508
0.7 0.01 −0.0000380 −0.380 0.0099620
0.8 0.01 −0.0000619 −0.619 0.0099381
0.9 0.01 −0.0000241 −0.241 0.0099759
1.0 0.01 −0.0000357 −0.357 0.0099643

∼ g4T 2, as the nonperturbative calculations predict. This
estimate is found because the magnetic field strength of
the spontaneously generated fields is of order (gH)1/2 ∼
g2T [5,6]. The possibility to calculate the magnetic mass
in perturbation theory is due to the approach when an
external field is taken into consideration exactly when the
polarization operator of the gauge field is calculated [13].
If one accounts for the magnetic field perturbatively, a
zero value will be obtained [23].

The result on the stabilization of the spectra of charged
gauge fields in the external fields at high temperature is
very important. It has relevance not only for the prob-
lem of the consistent description of the generation of mag-
netic fields but also for the related problem of the symme-
try behavior in external magnetic fields in the standard
model investigated recently in [8,12]. In more detail the
case of an external hypercharge magnetic field has been
considered by both the perturbative [9] and nonperturba-
tive [10] methods. In the latter paper, in particular, the
unexpected result – the absence of the lattice structure
condensate formed by the W -boson, Z-boson and electro-
magnetic fields – was obtained at high temperature for the
values of the external hypermagnetic field corresponding

Fig. 2. The dependence of the strengths of the generated chro-
momagnetic field (H3) on inverse temperature (b). The dashed
line is the theoretical position in the case of a single chromo-
magnetic field and the solid one is calculated in the presence
of both fields

Table 2. The strengths of the generated chromomagnetic field

β y δy δy/y,% ȳ

0.1 0.8 0.000301 0.038 0.800301
0.2 0.2 −0.000239 −0.119 0.199761
0.3 0.09 −0.0000988 −0.110 0.0899012
0.4 0.05 −0.0000884 −0.177 0.0499116
0.5 0.04 −0.000112 −0.280 0.039888
0.6 0.03 −0.0000982 −0.327 0.0299018
0.7 0.02 −0.0000442 −0.221 0.0199558
0.8 0.02 −0.0000733 −0.367 0.0199267
0.9 0.01 −0.000117 −1.166 0.009883
1.0 0.01 −0.000175 −1.749 0.009825

to known estimates when the condensate has to appear.
However, from the analysis carried out in the present pa-
per it follows that the W -boson spectrum remains stable
when the gauge field magnetic mass is included in the con-
sideration. So, no causes for instability of the vacuum with
the homogeneous magnetic field exist. The results of the
impossibility of a strong first-order phase transition due
to a strong hypermagnetic field obtained in perturbative
[9] and nonperturbative [10] calculations are in agreement
with each other. A more detailed comparison of the ap-
proaches and the results of nonperturbative and pertur-
bative calculations in the external fields are given in [9].

As is seen from Figs. 1 and 2, presenting the results of
numeric computations within the exact EP, the strengths
of the generated fields are increasing with the tempera-
ture rising. It is also found that the curves obtained in
a high-temperature expansion of the EP [6] are in good
agreement with our numeric calculations.

The ground state possessing magnetic and chromo-
magnetic fields makes an advantage for the existence of
these fields in the electroweak transition epoch. The state
with the fields is stable in the whole considered temper-
ature interval. The imaginary part in the EP exists for
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the external fields much stronger than the strengths of the
spontaneously generated ones. The interfusion of magnetic
and chromomagnetic fields arising from the quark sector
of the EP is weak. The change of the field minima in the
inclusion of the fields mixing does not exceed 2 per cents.

During the cooling of the universe the strengths of the
generated fields are decreasing, which is in agreement with
what is expected in cosmology.

One of the consequences on the results obtained is the
presence of a strong chromomagnetic field in the early
universe, in particular, at the electroweak phase transition
and, probably, until the deconfinement temperature. The
influence of this field on the transitions may bring new
insight in these problems. As our estimate showed, the
chromomagnetic field is as strong as the magnetic one. So
the role of strong interactions in the early universe in the
presence of the field needs more detailed investigations as
compared to what is usually assumed [3].

We would like to finish with the remark that in the
literature devoted to investigations of the quark–gluon
plasma in the deconfinement phase carried out by non-
perturbative methods, the vacuum magnetization at high
temperature has not been accounted for (see, for instance,
the recent paper [24] and references therein). From the
point of view of the present analysis (as well as other
studies carried out already in perturbation theory [4–6])
these investigations are incomplete. The generation of the
chromomagnetic field at high temperature has to be taken
into consideration. In this case a lot of discrepancies be-
tween the results obtained by different methods could be
removed.
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